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Abstract

This report proposes a novel formulation of a control theory for aircraft flight control.
Novel, because it incorporates a partial differential equation mathematical description of the
flow field about an aircraft into its flight control system. This is in contrast to existing
formulations which incorporate state variable models of aerodynamics according to the
method of Bryan, i.e. stability derivatives. First, motivation of the work is presented. This
is followed by a brief review of available mathematical formulations of aerodynamics with
a focus on their readiness for incorporation into real-time control laws. Next, a distributed
controller architecture is described which incorporates a distributed, real-time model of the
aerodynamics into a state estimator that drives a regulator. Finally, suggestions are made
for near-term research centered around this architecture, designed to produce a useful tool
for the aerospace community. The report is limited to formulation only and is meant to
provide an architecture for further study and future development by the Dynamics and
Control Branch and aerospace community in general.

Introduction

The past half century has witnessed the development of many advances in both analysis
and control of aerospace vehicles. The state of the knowledge in the dynamics of aircraft
and in classical flight control is well documented in textbooks of which references 1 and 2
are excellent examples. Modern control theory which had its start in the early 1960s and, in
application to aerospace vehicles, is laid out in AGARDograph  No. 251, reference 3, has
now even been applied directly in design, exemplified by the Pegasus launch vehicle,
which employs the modern LQG/LQR theory (Linear Quadratic Gaussian/Linear Quadratic
Regulator). For Pegasus the Kalman filter design is used in navigation and for atmospheric
control Kalman regulator gains the are used, references 4 and 5. Reference 5 goes into a
detailed discussion on requirements that led to using LQG/LQR theory for Pegasus.

The state of the art has a general common thread stemming from the method of Bryan,
reference 6, the use of a model of aerodynamics which is an algebraic map of the vehicle



states into forces and moments on the aircraft. This concept has led to a well developed
science both in analysis and experiment to uncover this map, an attempt to represent a
complex flow phenomena in terms simpler than those required to mathematically describe
flow physics more completely.

Areas where this may break down are those involving unsteady aerodynamics, e.g. rapidly
moving parts, wind gusts, or control devices that rely on or , by their very nature, produce
distributed, unsteady flow effects. Control devices used in the past have not been seriously
encumbered by the lack of a control theory that is conceptually capable of handling
unsteady or distributed aerodynamic effects since their frequency of operation was usually
much less than that necessary to produce substantial deviations from steady flow and, the
devices themselves tended to be macroscopic in nature allowing a mapping of their effect
into a common control point, e.g. a single control surface deflection.

At this time, however, a new group of devices is being developed which, owing to their
very nature, defies the steady, single-point, control assumption. These devices are flow
control actuators, active jets, synthetic jets, active porosity devices, and perhaps, even
others, and are expected to play a strong hand in the development of a seamless aircraft,
one with no moving external control surfaces, merely hundreds or even thousands of small
ports through which control of the vehicle as well as morphed performance trimming is
accomplished aerodynamically. The developments may be facilitated by a new technology
called MEMS (Micro-Electro-Mechanical Systems), an overview of which can be accessed
via the world wide web, reference 7. The basic concept of one of these devices, the
synthetic jet, is illustrated below. This device is a bellows which pumps fluid back and
forth into a primary flow using a diaphram. Because friction coupling the device acts like a
doublet, having zero net mass flow, but creating a vortex. These have been shown to have
profound effects on the primary flow. Their use in gangs, varying amplitude as well as
phasing spatially, are not thoroughly understood and are the subject of intense research.

Primary Flow

Diaphram Movement

Secondary
Flow

Synthetic Jet Concept

Fortunately, the state of the art in theoretical aerodynamics, considering the ability to
desensitize the effects of model error through the use of on-board measurements (Kalman
estimation and filter theory, references 8 and 9), when coupled with outstanding progress



in computer technology, does marginally support the inclusion of partial differential
equation models in flight control systems. The purpose of this paper is, then, to establish a
framework for doing just that, that is, to propose a flight control system architecture that
incorporates real-time, distributed models of aerodynamics.

First, we will overview the available aerodynamic theories, highlighting the features that
enable or disqualify each as a real-time model of vehicle aerodynamics for flight control
applications, finally selecting one for future development and expounding upon it briefly to
make transparent the discussion on the proposed flight control system architecture. Then,
the proposed architecture incorporating a distributed, partial differential, equation model is
presented. This concept follows closely that presented in reference 9. Finally, suggestions
are made for future research designed to transition this proposal from a mere concept into a
working tool for the aerospace community.

Brief Summary of Available Aerodynamic Theories

The basic theories involved have not changed since the publication of reference 10 which is
a comprehensive treatment of the state of the art as it existed at that time, prior to the
evolution of modern computer technology when people had to think and numerical results
were few and far between. Excluding molecular flow theory, the fundamental physical
equations used to obtain complete descriptions of fluid flow for aircraft are:

the momentum equation
the continuity equation
the energy equation

and, the equation of state of the gas.

Herein, we will not consider the energy equation or the equation of state of the gas but
rather will focus on the first two equations, momentum and continuity.

Aerodynamic theories that have been developed with these for aircraft applications include:

the so-called Navier-Stokes theory applicable to viscous, compressible flow,
Euler theory for invicid, compressible flow,

and, potential theory for flow assuming invicid, incompressible flow.

These have been listed in order of decreasing difficulty in application. To represent these
relations the following symbols will be used:

• t  is time
• grad  is the gradient operator in 3 dimensional space (x,y,z)

• w  is the instantaneous velocity vector of a particle at (x,y,z)
• g  is the body force vector, force/unit mass (usually gravity) at (x,y,z)

• p  is pressure at (x,y,z)

• ρ  is fluid density at (x,y,z)

• γ  is the ratio of specific heats for the gas

and dyadic notation is used, as in reference 10.

The continuity equation takes the general form:

  
∂ρ
∂t

+ w o grad(ρ) + ρ o div(w) = 0



and is applicable to all above formulations with the caveat that density may be a constant for
the last case considered, invisid, incompressible flow.

For the Navier-Stokes theory, in addition to the continuity equation, the energy equation,
and the equation of state one must:

include both normal and tangential stresses when applying Newton’s law to an
element;

assume that moments about an arbitrary axis through the element are zero, i.e. the
stress tensor is symmetric;

assume shearing stresses are proportional to the rate of change in the deformation of
the element;

geometrically relate deformation rates of the element to gradients in the velocity field;
and, rewrite surface stresses in terms of the pressure (defined to be the average normal

stress over a spherical element) and gradients in the velocity field;

If this is done the so-called Navier-Stokes equations result, reference 10:

  

∂w
∂t

+ w o grad(w) = g −
1

ρ
grad( p) +

1

3
ν ⋅grad(divw) +ν ⋅∆w

where ν is the coefficient of viscosity and g is the body force vector (force/unit mass),
usually gravity. The general features of these flows, if they cannot be described by a
simpler theory, are that:

no velocity potential exists anywhere in the flow field;
one must grid the entire flow field as well as boundaries to obtain numerical solutions

which can be difficult for mixed flow problems (i.e. transonic flow);
and,  the authors are not aware of any existing production codes suitable for control

applications (they take too much computer time and can produce unstable solutions,
just as a result of the numerical computations, i.e. the instabilities are not real).

The next simpler theory is Euler theory wherein the coefficient of viscosity is set to zero in
the momentum equation, resulting in the Euler equation (Newton’s law) for inviscous flow:

  

∂w
∂t

+ w o grad(w) = g −
1

ρ
grad(p)

and, under the assumption of adiabatic flow, the energy equation for a perfect gas becomes:

 
p

ργ = constant

For Euler theory, one may have velocity potential in shock free regions if circulation is
zero. This allows a two degree of freedom reduction of the solution variables list and is
generally worthwhile. However, one must still grid flow field as well as boundaries and
variable grid structures are necessary for mixed flows. Still, the authors are not aware of
any existing production codes suitable for control applications and solutions have the same
basic grid difficulties present in the Navier-Stokes theory.

Finally, we arrive at potential theory. Under the additional assumption of incompressibility,
the continuity equation above reduces to div(w) = 0 . With the additional assumption that

the fluid is initially irrotational and inviscous, a velocity potential, Φ, does exists, meaning

that w = grad(Φ) so, the continuity equation becomes ∆Φ = 0 where



∆ = ∇
2

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

 
 
 

 
 
  is the Laplacian operator. The solution to the flow

problem is enormously simplified since now, by virtue of Green's theorem, the solution in
the field can be expressed in terms of that on the boundaries and so, we need only grid the
near field boundaries -- aircraft surfaces and wakes assumming that the far field is handled
analytically. Most of the problems in modeling flow using this theory centers around
determining boundary conditions that meet the surface geometry requirements as well as the
singularities required in the flow to generate aerodynamic forces, i.e. modeling the vorticity
ans singular surfaces in the flow, the wakes.

For potential theory, the momentum equations can be integrated analytically to yield:

∂Φ
∂t

+
w2

2
+

p

ρ
−U = f (t) , the Bernoulli equation,

where U is the body force potential, usually  (− g ⋅∆ z). For most applications the function
f(t) is zero and the later equation is used to merely to define pressure distributions given the
time-varying solution to the potential equation ∆Φ = 0 which satisfies the boundary

conditions.

Over the past several years tremendous progress has been made in solutions to fluid flow
problems using potential theory and this has led to, so-called, panel methods which
incorporate far field boundary conditions analytically and the near-field boundary
conditions numerically. The Green's function solution to the potential equation is:

 

Φ(x, y, z) = Φ(ξ,η,ς )
∂ℜ
∫ n ⋅∇ 1

r

 
  

 
  dξdηdς

+ 1
r

 
  

 
  n ⋅∇Φ(ξ,η,ς )

∂ℜ
∫ dξdηdς

∇2Φ(x,y, z) = 0     ∀ (x, y, z) ⊂ ℜ
V(x,y, z) = grad(Φ(x,y, z))

which represents the solution in a region ℜ , below, bounded by, ∂ℜ  = (suw, slw , S∞

and the airfoil surface S). The far field boundary condition is V = (V∞ ,α ).



V∞ α

s suw

slw

S∞

n
ℜ

∂ℜ = S ∪ S∞ ∪ Slw ∪ Suw

The first integral can be thought of as a distribution of doublets of strengths

Φ(ξ ,η,ς )dξdηdς , integrated over ∂ℜ  and, the second as a distribution of sources

n ⋅∇Φ(ξ,η,ς )dξdηdς , integrated over ∂ℜ . So, the solution to the problem is the
flow field generated by the distribution of sources and doublets and the problem reduces to
that of generating appropriate boundary conditions for ∂ℜ  and then, generating the
distribution of sources and doublets over ∂ℜ  that meet those conditions. Panel methods do
this numerically by analytically representing the boundary conditions over the far field of
∂ℜ  and discretizing near field, i.e. breaking up the surface of an aircraft into surface
elements, or panels. Reference 11 provides an excellent tutorial on these methods and a
historical perspective on their development for low speed aerodynamics. A very brief
summary of the panel method is presented below, for completeness, so that the control
formulation proposed herein is understandable.

Although not directed to real-time flight control, the panel code PMARC, reference 12, is a
production code that incorporates the nuances required for real-time flow prediction and
unsteady, time-varying flow that results either from the deformation of the boundaries as
well as flow through them. So, in control jargon, provided Kalman filter theory, reference
8, can be cast so that on-board sensors can close the loop on general flow models of this
type, thereby desensitizing on-board estimation to inherent modeling errors (largely
resulting from the invisid, incompressible assumption), this model may prove suitable for
predicting a broad range of dynamics conditions in the rapid maneuvering of aircraft
handling incorporating appropriate models of novel, flow-control actuators.

Synopsis of panel codes - an example



A brief outline of the panel code solution method is presented in this section. The general
steps, 1 through 4, in panel methods are indicated below and are illustrated using a two-
dimensional doublet in a uniform offset flow:

1. Derive a formula for the influence of source/doublet strengths for a type of panels to be
used on the velocities in general space and, in particular, for the space including the
vehicle. Sometimes the source/doublets are distributed with uniform strengths over a
panel which might geometrically be a trapezoidal plane surface. Generally, the
source/doublet does not have to be collocated with the panel. There may be
computational advantages to that however but, for the aircraft morphing problem the
source/doublet location is not generally located at the control point, i.e. the point where
a boundary condition is to be enforced. For an example we take the panel to be a plane
surface and the a source/doublet  to be a doublet at the origin of strength C. The sketch
below lays out the geometry for this panel.

r

ΘU

Panel

Offset Flow

Doublet Location

Control Point

w r

Then, the appropriate formula is for the added potential of the panel is φ =−
C

2π
cos(θ)

r

and the velocity field, in general, is wr =
∂φ
∂r

=
C

2π
cos(θ)

r2 , wθ =
1

r

∂φ
∂θ

=
C

2π
sin(θ )

r2 .

This is often replaced by a more suitable source or doublet panel type, e.g. one with a
uniform or other source or doublet distribution as in the example below. These
replacements are now facilitated by the availability of symbolic manipulators which take
much of the drudgery out of the process and, for a 2 dimensional panel of uniform
doublet distribution of length L, located at coordinate xi, y i and inclined at an angle θ i to
the x axis we have the equation below which was obtained by integrating a uniformly
distributed doublet over the panel
length.



Φ(x, y, x i , yi , Li ,θ i,Ci) =Ci
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(x − xi ) cosθ i + (y − yi )sinθ i + Li

2
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 

 
 
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2
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2. Somehow represent the vehicle in panels of the type selected in step 1. There may be
errors in this. Even good panel methods have discontinuities between adjacents. For the
example of the point doublet we will use only one panel, normal to the ray θ=Θ. The
point where boundary conditions are evaluated and are to be satisfied by the solution is
called the control point. We take it to be at r=R and θ=Θ. In this case the geometry is

represented by s=(R,Θ).

3. Generate boundary condition equations in terms of geometry and offset flow. This
equation will be linear in source/doublet strengths and elementary for usual offset flow
conditions. For the point doublet example, we take the velocity outward normal to the
panel. Thus, to make the velocity normal to the panel zero, no flux, then the velocity
generated by the potential function should be set equal and opposite to that of a uniform

offset flow along the line Θ=0, i.e. wr (s) = −U cos(θ ) =
C

2π
cos(θ )

r2 . So, generally we

expect that the boundary condition will lead to wr (s) = −U cos(θ ) =
C

2π
cos(θ )

r2 or to

equations of the type f (U, s) = g(s) • C . In this case, the function f is nonlinear in s
and is usually elementary in U and the function g is a square matrix which is nonlinear
in s. C is a matrix of size equal to the number of panels. A complication exists in that
wake surfaces must also be included in some way and boundary conditions for them
must also be generated. Reference 11 has a detailed discussion of this matter but,



suffice it to say that the key to success of the entire process resides in this step. For a
two-dimensional problem, as shown in the example below, these conditions are a
Kutta condition, µ1− µΝ = µW, stating that the difference in doublet strength of the first
and last panel generating a closed surface is the strength of the doublet generating the
wake. These conditions are not the derivative of physical laws but, follow from insight
on the character of fluid flow. This is an alarming state of affairs for individuals used
models based on, say, Newton's laws. The option is to model the shedding of vorticity
in a more precise manner, namely using viscous flow equations.

4. Solve boundary conditions for source/doublet strengths. The solution may be
accomplished by an inversion of g. Important note: If this is done, the resulting g-1 can
be used to generate solutions for other uniform offset flow conditions by a cheap vector
multiplication. This means that it need be done only once in a system with no moving
parts and, it can be done at initialization. The evolution of the dynamics is then obtained
by recalculating the strengths using C = g− 1(s)• f (U, s) , the elementary f being the
only element to change between steps of the integration of the rigid body motions. For
a two-dimensional example with two spatially separated lifting surfaces these equations
become:
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wherein the symbols in the table below have been used.
Parameter Definition

Boundary Condition

V⊥ iJ
≡ −U∞ • niJ

  
Free stream velocity normal to panel i on surface J

Influence Coefficient

aiI jJ
≡ (µ)iI jJ

•n i I
 

The contribution of a unit strength singularity from control point j on Surface
J to control point i on surface I

Singularity Strength

µi I

The strength of the singularity at control point i on panel I

N I
Number of panels on surface I

5.   Given C, you have everything you need to calculate the flow velocities at any point in
space or, on the surfaces of the vehicle. Just superimpose potential functions for the
source/doublets of each panel with the strengths given and you have the total potential
function for the flow. The velocity at any point is given by: w = grad(Φ) and the



pressures can be calculated with the aid of the Bernoulli equation above. In this case  the
function f is usually a constant evaluated at the initial time at a infinite distance from the
vehicle where w=0. This is because w is the increment in velocity over the offset flow and
is zero at infinity.

Below is an example of an airfoil in two dimensions. Nodes of the panel ends are circled
and the flow field calculated using the above technique is show in a so-called quiver plot, a
plot of the velocity showing both magnitude and direction, at points in the field. Close
examination of the flow reveals that the boundary conditions at the trailing edge are not
quite satisfied. this is because of the strength of the wake vortex which generates lift and is
concentrated at the trailing edge. This particular airfoil has a shape that is being considered
for use in a study of synthetic jet effectiveness at Langley Research Center.
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In three dimensions wakes and lifting surfaces complicate the picture greatly but generally,
the Kutta condition can be applied at the trailing edge of all lifting surfaces to calculate lift
and to generate wake surfaces which are stream surfaces. This assumes that a trailing edge
is defined for all lifting surfaces. The trailing edge may not have a good definition on say, a
fuselage but some separation point is required and must be assumed.

Flight Control Architecture

The architecture proposed herein incorporates a distributed, real-time, state estimator that
drives a regulator. This is, of course, a gross simplification of what is required but serves
to highlight the novel ingredients from the research perspective. Pilot inputs of the form of
control stick deflections or mode switches are input into both the Regulator and Estimator
blocks and Sensor Inputs of the form of angular rate information, accelerometer
measurements, control surface transducers, pressure transducers, valve/switch closure



indicators, and possibly other signals, are input to the Estimator section. The function of
the Estimator is to determine the state of the aircraft and model its evolution given the
sensor data, control commands, and the current estimated aircraft state. The Regulator takes
the aircraft past and present states as well as commands from the pilot and generates
commands to the aircraft flight controls which may include conventional surfaces, pressure
ports, MEMS devices, slew commands for nozzles, and others. This architecture, in a non-
distributed form, has been successfully employed by Orbital Sciences in their Pegasus
launch vehicle, references 4 and 5. From the perspective of this paper, the main difference
between this architecture and that employed in, say, Pegasus is that the Estimator block will
include a distributed model of the aerodynamics of the vehicle to adequately model high
frequency aerodynamic phenomena and distributed control devices.

Pilot 
Inputs

Sensor 
Inputs

Regulator

Distributed
Estimator

Control
Commands

Flight Controller Architecture

The Estimator is structured after the normal Kalman filter, reference 8, except that aircraft
forces and moments will be provided by a potential model, possibly adjusted for the effects
of skin friction, separation, and other effects not directly modeled by potential theory. This
is illustrated in the skecth below wherein the vector y consists of all sensor inputs. The
state is xk includes the source/doublet distribution, Ck(σ), of the aerodynamic model as well
as the normal rigid body dynamics variables used in the dynamics and control of aircraft.
This source/doublet distribution is a function of the surface coordinate variable, σ. The

Kalman gain K as well as the sensor mapping variable H are also functions of σ as is the

map Fk(σ) which generates the aerodynamic forces and moments, Fk, given the

source/doublet distribution, Ck(σ). Finally, given the aerodynamic forces and moments, the
acceleration, Ak, is numerically integrated to predict the future state of the vehicle at the next
computer sample time, including the next source/doublet distribution. This is then used to
predict the measurements, yk, be they pressures or other more conventional measurements,
through the contraction operator H. Finally, once the measurements at the next interval are
sampled, the Kalman gain, K(σ), is used to operate on the innovations sequence, Rk(σ),
the difference between the measurements estimated during the last sample and actual
measurements taken, to adjust, or correct, the source/doublet distribution prediction based
on the actual, sampled measurements. This gain operator allows the designer to tune the
final estimate based on the best qualities of the potential model and the measurement
system.



Kalman Estimator for 
Real-Time Flow Control
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Suggestions for Future Research

The suggestions put forth here are directed to control theoretic development to support the
use of active flow control in maneuvering of aircraft as opposed to device development of
synthetic jets, active porosity, or other concepts that might be used for such. With that
caveat, one needs models of the devices that are consistent with potential theory. These are
generally models that represent the macroscopic effect of the device rather that a detailed
model it. An example might be to represent a synthetic jet as a doublet. Realizing that a
doublet in a uniform stream produces a cylinder, one might extend this idea to modelling
the effect of a synthetic jet as a virtual surface distortion, or bump. Establishing valid
models of the effect of active flow control devices is a fruitful area of research in and of
itself. This requires correlation with experiment and is currently in progress. Past that
developing an effective control law architecture still remains and is the subject of the
suggestions that follow.

Although significant differences exist between two- and three-dimensional flow which
center around the very nature of space, dictating the way vorticity is modeled, e.g. the
space surrounding conventional airfoil in three dimensional space is simply connected
whereas it is not in two dimensional space, focusing on a two-dimensional problem will
remove many of the more tedious difficulties such as flow visualization from consideration
so that the control problems of implementation can be effectively addressed and, is
therefore recommended.

One may use a two-dimensional airfoil, such as referred to herein, and test the proposed
architecture on that system in a simulated wind-tunnel environment. Synthetic jets, as
described herein, could be the actuation concept. They would be mounted on the top



surface along with  pressure transducers to serve as sensor inputs. If this tack were taken it
would be necessary to model the effect of the synthetic jet in a macroscopic manner, that is,
create a potential code compatible model as mentioned above. This could be to model the
synthetic jet as a doublet or as a virtual displacement, or bump, on the top surface of the
airfoil. The control process objective would be to modulate lift at contstant angle of attack.
The output of the work would be suggestion for locating the jet and pressure transducers
for optimal control effectiveness as well as a preliminary evaluation of the control
architecture proposed herein.

Another suggestion would be to use multiple airfoils and simulate a complete flight vehicle
in two dimensions, modelling only the wing and tail, considering them as rigidly
connected. Again the one must model the control device with a potential theory compatible
model but, the vehicle model should produce interesting results relative to the use of
distributed models in maneuvers.

Either of these suggested focus applications will profit from accelerated codes to deal with
the flow solver, not focusing on accuracy only, but, studying the tradeoff between model
accuracy and computational speed which governs the real-time suitability of the system.
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